中国科技大学实现国际综合性能最优单光子源,量子计算获重要进展

单光子源是光学量子信息技术的核心资源。近期,中科院院士、中国科学技术大学教授潘建伟与陆朝阳、霍永恒等人领衔,和多位国内及德国、丹麦学者合作,在国际上首次提出一种新型理论方案,在窄带和宽带两种微腔上成功实现了确定性偏振、高纯度、高全同性和高效率的单光子源,为光学量子计算机超越经典计算机奠定了重要的科学基础。国际权威学术期刊《自然·光子学》日前发表了该成果,评价其“解决了一个长期存在的挑战”。

中国科技大学潘建伟、陆朝阳等近日在国际上首次实现基于半导体量子点的高效率和高全同性的单光子源,综合性能达到国际最优,为实现基于固态体系的大规模光子纠缠和量子信息技术奠定了科学基础。

光学量子信息技术所需要的完美单光子源,要同时满足确定性偏振、高纯度、高全同性和高效率这4个几乎相互矛盾的严苛条件。从2000年以来,美国加州大学等相继在单光子源研究方向取得进展,但其品质还不能满足实用化需要。

量子点是通过分子束外延方法制备的半导体量子器件,原理上可以为量子信息技术提供理想的单光子源。为了能够真正用于可扩展、实用化的量子信息技术,单光子器件必须同时满足三个核心性能指标:单光子性、高全同性和高提取效率。尽管从2000年开始,国际上许多研究机构对量子点光学调控进行了深入探索,然而这三个核心指标一直无法得到同时满足,因而成为固态量子光学领域15年来悬而未决的重大挑战。

2013年以来,我国潘建伟、陆朝阳等人在国际上首创了量子点脉冲共振激发技术,开始引领高性能单光子源的发展。但要实现完美的单光子源,还有两个重大技术难题需要逾越:一是量子点会随机发射两种偏振的光子,二是共振激发需要消除背景激光。

2013年,潘建伟、陆朝阳等首创量子点脉冲共振激发,实现了当时国际上全同性最好的单光子源。但由于量子点平面腔结构的限制,之前的实验中荧光收集效率较低。为了大幅提高荧光提取效率,他们通过高精度分子束外延生长与纳米刻蚀工艺结合,获得了低温下与量子点单光子频率共振的高品质因子光学谐振腔。结果显示,实验产生的单光子源提取效率达到66%,单光子性优于99.1%,全同性优于98.6%,在国际上首次同时解决了单光子源的三个关键问题,成为目前国际上综合性能最优秀的单光子源。

近期,中科大潘建伟团队在国际上首次提出了椭圆微腔耦合实现确定性偏振单光子的理论方案。他们与中山大学余思远研究组、国家纳米科学中心戴庆研究组、德国维尔茨堡大学霍夫林研究组以及丹麦科技大学格里格森研究组合作,在实验上发展出垂直偏振无损消光技术,解决了上述两大难题。在此基础上,他们分别在窄带微柱和宽带靶眼微腔中,实验制备出同时满足确定性偏振、高纯度、高全同性和高效率的单光子源,再次刷新了单光子源综合性能的国际纪录,为实现超越传统经典计算机的“量子霸权”科学目标迈出重要一步。

该实验实现的量子点单光子源亮度比国际上最好的基于参量下转换的触发式单光子提高了10倍,而且所需激光泵浦功耗降低1千万倍。这样的量子点单光子源可在将来应用于大规模光子纠缠,进一步推动多光子纠缠与干涉度量学的发展。

据介绍,这项成果标志着我国在可扩展光学量子信息技术研究方面继续保持国际领跑。《自然·光子学》审稿人评价称,这项成果“解决了一个长期存在的挑战”“是巨大的一步”。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图